skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chérubin, Laurent"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite the large efforts made by the ocean modeling community, such as the GODAE (Global Ocean Data Assimilation Experiment), which started in 1997 and was renamed as OceanPredict in 2019, the prediction of ocean currents has remained a challenge until the present day—particularly in ocean regions that are characterized by rapid changes in their circulation due to changes in atmospheric forcing or due to the release of available potential energy through the development of instabilities. Ocean numerical models’ useful forecast window is no longer than two days over a given area with the best initialization possible. Predictions quickly diverge from the observational field throughout the water and become unreliable, despite the fact that they can simulate the observed dynamics through other variables such as temperature, salinity and sea surface height. Numerical methods such as harmonic analysis are used to predict both short- and long-term tidal currents with significant accuracy. However, they are limited to the areas where the tide was measured. In this study, a new approach to ocean current prediction based on deep learning is proposed. This method is evaluated on the measured energetic currents of the Gulf of Mexico circulation dominated by the Loop Current (LC) at multiple spatial and temporal scales. The approach taken herein consists of dividing the velocity tensor into planes perpendicular to each of the three Cartesian coordinate system directions. A Long Short-Term Memory Recurrent Neural Network, which is best suited to handling long-term dependencies in the data, was thus used to predict the evolution of the velocity field in each plane, along each of the three directions. The predicted tensors, made of the planes perpendicular to each Cartesian direction, revealed that the model’s prediction skills were best for the flow field in the planes perpendicular to the direction of prediction. Furthermore, the fusion of all three predicted tensors significantly increased the overall skills of the flow prediction over the individual model’s predictions. The useful forecast period of this new model was greater than 4 days with a root mean square error less than 0.05 cm·s−1 and a correlation coefficient of 0.6. 
    more » « less
  2. A divide-and-conquer (DAC) machine learning approach was first proposed by Wang et al. to forecast the sea surface height (SSH) of the Loop Current System (LCS) in the Gulf of Mexico. In this DAC approach, the forecast domain was divided into non-overlapping partitions, each of which had their own prediction model. The full domain SSH prediction was recovered by interpolating the SSH across each partition boundaries. Although the original DAC model was able to predict the LCS evolution and eddy shedding more than two months and three months in advance, respectively, growing errors at the partition boundaries negatively affected the model forecasting skills. In the study herein, a new partitioning method, which consists of overlapping partitions is presented. The region of interest is divided into 50%-overlapping partitions. At each prediction step, the SSH value at each point is computed from overlapping partitions, which significantly reduces the occurrence of unrealistic SSH features at partition boundaries. This new approach led to a significant improvement of the overall model performance both in terms of features prediction such as the location of the LC eddy SSH contours but also in terms of event prediction, such as the LC ring separation. We observed an approximate 12% decrease in error over a 10-week prediction, and also show that this method can approximate the location and shedding of eddy Cameron better than the original DAC method. 
    more » « less
  3. null (Ed.)